home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Mac-Source 1994 July
/
Mac-Source_July_1994.iso
/
Other Langs
/
gawk-2.11
/
eval.c
< prev
next >
Wrap
Text File
|
1990-09-08
|
30KB
|
1,141 lines
/*
* eval.c - gawk parse tree interpreter
*/
/*
* Copyright (C) 1986, 1988, 1989 the Free Software Foundation, Inc.
*
* This file is part of GAWK, the GNU implementation of the
* AWK Progamming Language.
*
* GAWK is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 1, or (at your option)
* any later version.
*
* GAWK is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GAWK; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "awk.h"
#include <math.h>
extern void do_print();
extern void do_printf();
extern NODE *do_match();
extern NODE *do_sub();
extern NODE *do_getline();
extern NODE *concat_exp();
extern int in_array();
extern void do_delete();
extern double pow();
static int eval_condition();
static NODE *op_assign();
static NODE *func_call();
static NODE *match_op();
NODE *_t; /* used as a temporary in macros */
#ifdef MSDOS
double _msc51bug; /* to get around a bug in MSC 5.1 */
#endif
NODE *ret_node;
/* More of that debugging stuff */
#ifdef DEBUG
#define DBG_P(X) print_debug X
#else
#define DBG_P(X)
#endif
/* Macros and variables to save and restore function and loop bindings */
/*
* the val variable allows return/continue/break-out-of-context to be
* caught and diagnosed
*/
#define PUSH_BINDING(stack, x, val) (memcpy ((char *)(stack), (char *)(x), sizeof (jmp_buf)), val++)
#define RESTORE_BINDING(stack, x, val) (memcpy ((char *)(x), (char *)(stack), sizeof (jmp_buf)), val--)
static jmp_buf loop_tag; /* always the current binding */
static int loop_tag_valid = 0; /* nonzero when loop_tag valid */
static int func_tag_valid = 0;
static jmp_buf func_tag;
extern int exiting, exit_val;
/*
* This table is used by the regexp routines to do case independant
* matching. Basically, every ascii character maps to itself, except
* uppercase letters map to lower case ones. This table has 256
* entries, which may be overkill. Note also that if the system this
* is compiled on doesn't use 7-bit ascii, casetable[] should not be
* defined to the linker, so gawk should not load.
*
* Do NOT make this array static, it is used in several spots, not
* just in this file.
*/
#if 'a' == 97 /* it's ascii */
char casetable[] = {
'\000', '\001', '\002', '\003', '\004', '\005', '\006', '\007',
'\010', '\011', '\012', '\013', '\014', '\015', '\016', '\017',
'\020', '\021', '\022', '\023', '\024', '\025', '\026', '\027',
'\030', '\031', '\032', '\033', '\034', '\035', '\036', '\037',
/* ' ' '!' '"' '#' '$' '%' '&' ''' */
'\040', '\041', '\042', '\043', '\044', '\045', '\046', '\047',
/* '(' ')' '*' '+' ',' '-' '.' '/' */
'\050', '\051', '\052', '\053', '\054', '\055', '\056', '\057',
/* '0' '1' '2' '3' '4' '5' '6' '7' */
'\060', '\061', '\062', '\063', '\064', '\065', '\066', '\067',
/* '8' '9' ':' ';' '<' '=' '>' '?' */
'\070', '\071', '\072', '\073', '\074', '\075', '\076', '\077',
/* '@' 'A' 'B' 'C' 'D' 'E' 'F' 'G' */
'\100', '\141', '\142', '\143', '\144', '\145', '\146', '\147',
/* 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' */
'\150', '\151', '\152', '\153', '\154', '\155', '\156', '\157',
/* 'P' 'Q' 'R' 'S' 'T' 'U' 'V' 'W' */
'\160', '\161', '\162', '\163', '\164', '\165', '\166', '\167',
/* 'X' 'Y' 'Z' '[' '\' ']' '^' '_' */
'\170', '\171', '\172', '\133', '\134', '\135', '\136', '\137',
/* '`' 'a' 'b' 'c' 'd' 'e' 'f' 'g' */
'\140', '\141', '\142', '\143', '\144', '\145', '\146', '\147',
/* 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o' */
'\150', '\151', '\152', '\153', '\154', '\155', '\156', '\157',
/* 'p' 'q' 'r' 's' 't' 'u' 'v' 'w' */
'\160', '\161', '\162', '\163', '\164', '\165', '\166', '\167',
/* 'x' 'y' 'z' '{' '|' '}' '~' */
'\170', '\171', '\172', '\173', '\174', '\175', '\176', '\177',
'\200', '\201', '\202', '\203', '\204', '\205', '\206', '\207',
'\210', '\211', '\212', '\213', '\214', '\215', '\216', '\217',
'\220', '\221', '\222', '\223', '\224', '\225', '\226', '\227',
'\230', '\231', '\232', '\233', '\234', '\235', '\236', '\237',
'\240', '\241', '\242', '\243', '\244', '\245', '\246', '\247',
'\250', '\251', '\252', '\253', '\254', '\255', '\256', '\257',
'\260', '\261', '\262', '\263', '\264', '\265', '\266', '\267',
'\270', '\271', '\272', '\273', '\274', '\275', '\276', '\277',
'\300', '\301', '\302', '\303', '\304', '\305', '\306', '\307',
'\310', '\311', '\312', '\313', '\314', '\315', '\316', '\317',
'\320', '\321', '\322', '\323', '\324', '\325', '\326', '\327',
'\330', '\331', '\332', '\333', '\334', '\335', '\336', '\337',
'\340', '\341', '\342', '\343', '\344', '\345', '\346', '\347',
'\350', '\351', '\352', '\353', '\354', '\355', '\356', '\357',
'\360', '\361', '\362', '\363', '\364', '\365', '\366', '\367',
'\370', '\371', '\372', '\373', '\374', '\375', '\376', '\377',
};
#else
#include "You lose. You will need a translation table for your character set."
#endif
/*
* Tree is a bunch of rules to run. Returns zero if it hit an exit()
* statement
*/
int
interpret(tree)
NODE *tree;
{
volatile jmp_buf loop_tag_stack; /* shallow binding stack for loop_tag */
static jmp_buf rule_tag;/* tag the rule currently being run, for NEXT
* and EXIT statements. It is static because
* there are no nested rules */
register NODE *t = NULL;/* temporary */
volatile NODE **lhs; /* lhs == Left Hand Side for assigns, etc */
volatile struct search *l; /* For array_for */
volatile NODE *stable_tree;
if (tree == NULL)
return 1;
sourceline = tree->source_line;
source = tree->source_file;
switch (tree->type) {
case Node_rule_list:
for (t = tree; t != NULL; t = t->rnode) {
tree = t->lnode;
/* FALL THROUGH */
case Node_rule_node:
sourceline = tree->source_line;
source = tree->source_file;
switch (setjmp(rule_tag)) {
case 0: /* normal non-jump */
/* test pattern, if any */
if (tree->lnode == NULL
|| eval_condition(tree->lnode)) {
DBG_P(("Found a rule", (int)tree->rnode));
if (tree->rnode == NULL) {
/*
* special case: pattern with
* no action is equivalent to
* an action of {print}
*/
NODE printnode;
printnode.type = Node_K_print;
printnode.lnode = NULL;
printnode.rnode = NULL;
do_print(&printnode);
} else if (tree->rnode->type == Node_illegal) {
/*
* An empty statement
* (``{ }'') is different
* from a missing statement.
* A missing statement is
* equal to ``{ print }'' as
* above, but an empty
* statement is as in C, do
* nothing.
*/
} else
(void) interpret(tree->rnode);
}
break;
case TAG_CONTINUE: /* NEXT statement */
return 1;
case TAG_BREAK:
return 0;
default:
cant_happen();
}
if (t == NULL)
break;
}
break;
case Node_statement_list:
for (t = tree; t != NULL; t = t->rnode) {
DBG_P(("Statements", (int)t->lnode));
(void) interpret(t->lnode);
}
break;
case Node_K_if:
DBG_P(("IF", (int)tree->lnode));
if (eval_condition(tree->lnode)) {
DBG_P(("True", (int)tree->rnode->lnode));
(void) interpret(tree->rnode->lnode);
} else {
DBG_P(("False", (int)tree->rnode->rnode));
(void) interpret(tree->rnode->rnode);
}
break;
case Node_K_while:
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
DBG_P(("WHILE", (int)tree->lnode));
stable_tree = tree;
while (eval_condition(stable_tree->lnode)) {
switch (setjmp(loop_tag)) {
case 0: /* normal non-jump */
DBG_P(("DO", (int)stable_tree->rnode));
(void) interpret(stable_tree->rnode);
break;
case TAG_CONTINUE: /* continue statement */
break;
case TAG_BREAK: /* break statement */
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
return 1;
default:
cant_happen();
}
}
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
break;
case Node_K_do:
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
stable_tree = tree;
do {
switch (setjmp(loop_tag)) {
case 0: /* normal non-jump */
DBG_P(("DO", (int)stable_tree->rnode));
(void) interpret(stable_tree->rnode);
break;
case TAG_CONTINUE: /* continue statement */
break;
case TAG_BREAK: /* break statement */
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
return 1;
default:
cant_happen();
}
DBG_P(("WHILE", (int)stable_tree->lnode));
} while (eval_condition(stable_tree->lnode));
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
break;
case Node_K_for:
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
DBG_P(("FOR", (int)tree->forloop->init));
(void) interpret(tree->forloop->init);
DBG_P(("FOR.WHILE", (int)tree->forloop->cond));
stable_tree = tree;
while (eval_condition(stable_tree->forloop->cond)) {
switch (setjmp(loop_tag)) {
case 0: /* normal non-jump */
DBG_P(("FOR.DO", (int)stable_tree->lnode));
(void) interpret(stable_tree->lnode);
/* fall through */
case TAG_CONTINUE: /* continue statement */
DBG_P(("FOR.INCR", (int)stable_tree->forloop->incr));
(void) interpret(stable_tree->forloop->incr);
break;
case TAG_BREAK: /* break statement */
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
return 1;
default:
cant_happen();
}
}
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
break;
case Node_K_arrayfor:
#define hakvar forloop->init
#define arrvar forloop->incr
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
DBG_P(("AFOR.VAR", (int)tree->hakvar));
lhs = (volatile NODE **) get_lhs(tree->hakvar, 1);
t = tree->arrvar;
if (t->type == Node_param_list)
t = stack_ptr[t->param_cnt];
stable_tree = tree;
for (l = assoc_scan(t); l; l = assoc_next((struct search *)l)) {
deref = *((NODE **) lhs);
do_deref();
*lhs = dupnode(l->retval);
if (field_num == 0)
set_record(fields_arr[0]->stptr,
fields_arr[0]->stlen);
DBG_P(("AFOR.NEXTIS", (int)*lhs));
switch (setjmp(loop_tag)) {
case 0:
DBG_P(("AFOR.DO", (int)stable_tree->lnode));
(void) interpret(stable_tree->lnode);
case TAG_CONTINUE:
break;
case TAG_BREAK:
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
field_num = -1;
return 1;
default:
cant_happen();
}
}
field_num = -1;
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
break;
case Node_K_break:
DBG_P(("BREAK", (int)NULL));
if (loop_tag_valid == 0)
fatal("unexpected break");
longjmp(loop_tag, TAG_BREAK);
break;
case Node_K_continue:
DBG_P(("CONTINUE", (int)NULL));
if (loop_tag_valid == 0)
fatal("unexpected continue");
longjmp(loop_tag, TAG_CONTINUE);
break;
case Node_K_print:
DBG_P(("PRINT", (int)tree));
do_print(tree);
break;
case Node_K_printf:
DBG_P(("PRINTF", (int)tree));
do_printf(tree);
break;
case Node_K_next:
DBG_P(("NEXT", (int)NULL));
longjmp(rule_tag, TAG_CONTINUE);
break;
case Node_K_exit:
/*
* In A,K,&W, p. 49, it says that an exit statement "...
* causes the program to behave as if the end of input had
* occurred; no more input is read, and the END actions, if
* any are executed." This implies that the rest of the rules
* are not done. So we immediately break out of the main loop.
*/
DBG_P(("EXIT", (int)NULL));
exiting = 1;
if (tree) {
t = tree_eval(tree->lnode);
exit_val = (int) force_number(t);
}
free_temp(t);
longjmp(rule_tag, TAG_BREAK);
break;
case Node_K_return:
DBG_P(("RETURN", (int)NULL));
t = tree_eval(tree->lnode);
ret_node = dupnode(t);
free_temp(t);
longjmp(func_tag, TAG_RETURN);
break;
default:
/*
* Appears to be an expression statement. Throw away the
* value.
*/
DBG_P(("E", (int)NULL));
t = tree_eval(tree);
free_temp(t);
break;
}
return 1;
}
/* evaluate a subtree, allocating strings on a temporary stack. */
NODE *
r_tree_eval(tree)
NODE *tree;
{
register NODE *r, *t1, *t2; /* return value & temporary subtrees */
int i;
register NODE **lhs;
int di;
AWKNUM x, x2;
long lx;
extern NODE **fields_arr;
source = tree->source_file;
sourceline = tree->source_line;
switch (tree->type) {
case Node_and:
DBG_P(("AND", (int)tree));
return tmp_number((AWKNUM) (eval_condition(tree->lnode)
&& eval_condition(tree->rnode)));
case Node_or:
DBG_P(("OR", (int)tree));
return tmp_number((AWKNUM) (eval_condition(tree->lnode)
|| eval_condition(tree->rnode)));
case Node_not:
DBG_P(("NOT", (int)tree));
return tmp_number((AWKNUM) ! eval_condition(tree->lnode));
/* Builtins */
case Node_builtin:
DBG_P(("builtin", (int)tree));
return ((*tree->proc) (tree->subnode));
case Node_K_getline:
DBG_P(("GETLINE", (int)tree));
return (do_getline(tree));
case Node_in_array:
DBG_P(("IN_ARRAY", (int)tree));
return tmp_number((AWKNUM) in_array(tree->lnode, tree->rnode));
case Node_func_call:
DBG_P(("func_call", (int)tree));
return func_call(tree->rnode, tree->lnode);
case Node_K_delete:
DBG_P(("DELETE", (int)tree));
do_delete(tree->lnode, tree->rnode);
return Nnull_string;
/* unary operations */
case Node_var:
case Node_var_array:
case Node_param_list:
case Node_subscript:
case Node_field_spec:
DBG_P(("var_type ref", (int)tree));
lhs = get_lhs(tree, 0);
field_num = -1;
deref = 0;
return *lhs;
case Node_unary_minus:
DBG_P(("UMINUS", (int)tree));
t1 = tree_eval(tree->subnode);
x = -force_number(t1);
free_temp(t1);
return tmp_number(x);
case Node_cond_exp:
DBG_P(("?:", (int)tree));
if (eval_condition(tree->lnode)) {
DBG_P(("True", (int)tree->rnode->lnode));
return tree_eval(tree->rnode->lnode);
}
DBG_P(("False", (int)tree->rnode->rnode));
return tree_eval(tree->rnode->rnode);
case Node_match:
case Node_nomatch:
case Node_regex:
DBG_P(("[no]match_op", (int)tree));
return match_op(tree);
case Node_func:
fatal("function `%s' called with space between name and (,\n%s",
tree->lnode->param,
"or used in other expression context");
/* assignments */
case Node_assign:
DBG_P(("ASSIGN", (int)tree));
r = tree_eval(tree->rnode);
lhs = get_lhs(tree->lnode, 1);
*lhs = dupnode(r);
free_temp(r);
do_deref();
if (field_num == 0)
set_record(fields_arr[0]->stptr, fields_arr[0]->stlen);
field_num = -1;
return *lhs;
/* other assignment types are easier because they are numeric */
case Node_preincrement:
case Node_predecrement:
case Node_postincrement:
case Node_postdecrement:
case Node_assign_exp:
case Node_assign_times:
case Node_assign_quotient:
case Node_assign_mod:
case Node_assign_plus:
case Node_assign_minus:
return op_assign(tree);
default:
break; /* handled below */
}
/* evaluate subtrees in order to do binary operation, then keep going */
t1 = tree_eval(tree->lnode);
t2 = tree_eval(tree->rnode);
switch (tree->type) {
case Node_concat:
DBG_P(("CONCAT", (int)tree));
t1 = force_string(t1);
t2 = force_string(t2);
r = newnode(Node_val);
r->flags |= (STR|TEMP);
r->stlen = t1->stlen + t2->stlen;
r->stref = 1;
emalloc(r->stptr, char *, r->stlen + 1, "tree_eval");
memcpy(r->stptr, t1->stptr, t1->stlen);
memcpy(r->stptr + t1->stlen, t2->stptr, t2->stlen + 1);
free_temp(t1);
free_temp(t2);
return r;
case Node_geq:
case Node_leq:
case Node_greater:
case Node_less:
case Node_notequal:
case Node_equal:
di = cmp_nodes(t1, t2);
free_temp(t1);
free_temp(t2);
switch (tree->type) {
case Node_equal:
DBG_P(("EQUAL", (int)tree));
return tmp_number((AWKNUM) (di == 0));
case Node_notequal:
DBG_P(("NOT_EQUAL", (int)tree));
return tmp_number((AWKNUM) (di != 0));
case Node_less:
DBG_P(("LESS_THAN", (int)tree));
return tmp_number((AWKNUM) (di < 0));
case Node_greater:
DBG_P(("GREATER_THAN", (int)tree));
return tmp_number((AWKNUM) (di > 0));
case Node_leq:
DBG_P(("LESS_THAN_EQUAL", (int)tree));
return tmp_number((AWKNUM) (di <= 0));
case Node_geq:
DBG_P(("GREATER_THAN_EQUAL", (int)tree));
return tmp_number((AWKNUM) (di >= 0));
default:
cant_happen();
}
break;
default:
break; /* handled below */
}
(void) force_number(t1);
(void) force_number(t2);
switch (tree->type) {
case Node_exp:
DBG_P(("EXPONENT", (int)tree));
if ((lx = t2->numbr) == t2->numbr) { /* integer exponent */
if (lx == 0)
x = 1;
else if (lx == 1)
x = t1->numbr;
else {
/* doing it this way should be more precise */
for (x = x2 = t1->numbr; --lx; )
x *= x2;
}
} else
x = pow((double) t1->numbr, (double) t2->numbr);
free_temp(t1);
free_temp(t2);
return tmp_number(x);
case Node_times:
DBG_P(("MULT", (int)tree));
x = t1->numbr * t2->numbr;
free_temp(t1);
free_temp(t2);
return tmp_number(x);
case Node_quotient:
DBG_P(("DIVIDE", (int)tree));
x = t2->numbr;
free_temp(t2);
if (x == (AWKNUM) 0)
fatal("division by zero attempted");
/* NOTREACHED */
else {
x = t1->numbr / x;
free_temp(t1);
return tmp_number(x);
}
case Node_mod:
DBG_P(("MODULUS", (int)tree));
x = t2->numbr;
free_temp(t2);
if (x == (AWKNUM) 0)
fatal("division by zero attempted in mod");
/* NOTREACHED */
lx = t1->numbr / x; /* assignment to long truncates */
x2 = lx * x;
x = t1->numbr - x2;
free_temp(t1);
return tmp_number(x);
case Node_plus:
DBG_P(("PLUS", (int)tree));
x = t1->numbr + t2->numbr;
free_temp(t1);
free_temp(t2);
return tmp_number(x);
case Node_minus:
DBG_P(("MINUS", (int)tree));
x = t1->numbr - t2->numbr;
free_temp(t1);
free_temp(t2);
return tmp_number(x);
default:
fatal("illegal type (%d) in tree_eval", tree->type);
}
return 0;
}
/*
* This makes numeric operations slightly more efficient. Just change the
* value of a numeric node, if possible
*/
void
assign_number(ptr, value)
NODE **ptr;
AWKNUM value;
{
extern NODE *deref;
register NODE *n = *ptr;
#ifdef DEBUG
if (n->type != Node_val)
cant_happen();
#endif
if (n == Nnull_string) {
*ptr = make_number(value);
deref = 0;
return;
}
if (n->stref > 1) {
*ptr = make_number(value);
return;
}
if ((n->flags & STR) && (n->flags & (MALLOC|TEMP)))
free(n->stptr);
n->numbr = value;
n->flags |= (NUM|NUMERIC);
n->flags &= ~STR;
n->stref = 0;
deref = 0;
}
/* Is TREE true or false? Returns 0==false, non-zero==true */
static int
eval_condition(tree)
NODE *tree;
{
register NODE *t1;
int ret;
if (tree == NULL) /* Null trees are the easiest kinds */
return 1;
if (tree->type == Node_line_range) {
/*
* Node_line_range is kind of like Node_match, EXCEPT: the
* lnode field (more properly, the condpair field) is a node
* of a Node_cond_pair; whether we evaluate the lnode of that
* node or the rnode depends on the triggered word. More
* precisely: if we are not yet triggered, we tree_eval the
* lnode; if that returns true, we set the triggered word.
* If we are triggered (not ELSE IF, note), we tree_eval the
* rnode, clear triggered if it succeeds, and perform our
* action (regardless of success or failure). We want to be
* able to begin and end on a single input record, so this
* isn't an ELSE IF, as noted above.
*/
if (!tree->triggered)
if (!eval_condition(tree->condpair->lnode))
return 0;
else
tree->triggered = 1;
/* Else we are triggered */
if (eval_condition(tree->condpair->rnode))
tree->triggered = 0;
return 1;
}
/*
* Could just be J.random expression. in which case, null and 0 are
* false, anything else is true
*/
t1 = tree_eval(tree);
if (t1->flags & NUMERIC)
ret = t1->numbr != 0.0;
else
ret = t1->stlen != 0;
free_temp(t1);
return ret;
}
int
cmp_nodes(t1, t2)
NODE *t1, *t2;
{
AWKNUM d;
AWKNUM d1;
AWKNUM d2;
int ret;
int len1, len2;
if (t1 == t2)
return 0;
d1 = force_number(t1);
d2 = force_number(t2);
if ((t1->flags & NUMERIC) && (t2->flags & NUMERIC)) {
d = d1 - d2;
if (d == 0.0) /* from profiling, this is most common */
return 0;
if (d > 0.0)
return 1;
return -1;
}
t1 = force_string(t1);
t2 = force_string(t2);
len1 = t1->stlen;
len2 = t2->stlen;
if (len1 == 0) {
if (len2 == 0)
return 0;
else
return -1;
} else if (len2 == 0)
return 1;
ret = memcmp(t1->stptr, t2->stptr, len1 <= len2 ? len1 : len2);
if (ret == 0 && len1 != len2)
return len1 < len2 ? -1: 1;
return ret;
}
static NODE *
op_assign(tree)
NODE *tree;
{
AWKNUM rval, lval;
NODE **lhs;
AWKNUM t1, t2;
long ltemp;
NODE *tmp;
lhs = get_lhs(tree->lnode, 1);
lval = force_number(*lhs);
switch(tree->type) {
case Node_preincrement:
case Node_predecrement:
DBG_P(("+-X", (int)tree));
assign_number(lhs,
lval + (tree->type == Node_preincrement ? 1.0 : -1.0));
do_deref();
if (field_num == 0)
set_record(fields_arr[0]->stptr, fields_arr[0]->stlen);
field_num = -1;
return *lhs;
case Node_postincrement:
case Node_postdecrement:
DBG_P(("X+-", (int)tree));
assign_number(lhs,
lval + (tree->type == Node_postincrement ? 1.0 : -1.0));
do_deref();
if (field_num == 0)
set_record(fields_arr[0]->stptr, fields_arr[0]->stlen);
field_num = -1;
return tmp_number(lval);
default:
break; /* handled below */
}
tmp = tree_eval(tree->rnode);
rval = force_number(tmp);
free_temp(tmp);
switch(tree->type) {
case Node_assign_exp:
DBG_P(("ASSIGN_exp", (int)tree));
if ((ltemp = rval) == rval) { /* integer exponent */
if (ltemp == 0)
assign_number(lhs, (AWKNUM) 1);
else if (ltemp == 1)
assign_number(lhs, lval);
else {
/* doing it this way should be more precise */
for (t1 = t2 = lval; --ltemp; )
t1 *= t2;
assign_number(lhs, t1);
}
} else
assign_number(lhs, (AWKNUM) pow((double) lval, (double) rval));
break;
case Node_assign_times:
DBG_P(("ASSIGN_times", (int)tree));
assign_number(lhs, lval * rval);
break;
case Node_assign_quotient:
DBG_P(("ASSIGN_quotient", (int)tree));
if (rval == (AWKNUM) 0)
fatal("division by zero attempted in /=");
assign_number(lhs, lval / rval);
break;
case Node_assign_mod:
DBG_P(("ASSIGN_mod", (int)tree));
if (rval == (AWKNUM) 0)
fatal("division by zero attempted in %=");
ltemp = lval / rval; /* assignment to long truncates */
t1 = ltemp * rval;
t2 = lval - t1;
assign_number(lhs, t2);
break;
case Node_assign_plus:
DBG_P(("ASSIGN_plus", (int)tree));
assign_number(lhs, lval + rval);
break;
case Node_assign_minus:
DBG_P(("ASSIGN_minus", (int)tree));
assign_number(lhs, lval - rval);
break;
default:
cant_happen();
}
do_deref();
if (field_num == 0)
set_record(fields_arr[0]->stptr, fields_arr[0]->stlen);
field_num = -1;
return *lhs;
}
NODE **stack_ptr;
static NODE *
func_call(name, arg_list)
NODE *name; /* name is a Node_val giving function name */
NODE *arg_list; /* Node_expression_list of calling args. */
{
register NODE *arg, *argp, *r;
NODE *n, *f;
volatile jmp_buf func_tag_stack;
volatile jmp_buf loop_tag_stack;
volatile int save_loop_tag_valid = 0;
volatile NODE **save_stack, *save_ret_node;
NODE **local_stack, **sp;
int count;
extern NODE *ret_node;
/*
* retrieve function definition node
*/
f = lookup(variables, name->stptr);
if (!f || f->type != Node_func)
fatal("function `%s' not defined", name->stptr);
#ifdef FUNC_TRACE
fprintf(stderr, "function %s called\n", name->stptr);
#endif
count = f->lnode->param_cnt;
emalloc(local_stack, NODE **, count * sizeof(NODE *), "func_call");
sp = local_stack;
/*
* for each calling arg. add NODE * on stack
*/
for (argp = arg_list; count && argp != NULL; argp = argp->rnode) {
arg = argp->lnode;
r = newnode(Node_var);
/*
* call by reference for arrays; see below also
*/
if (arg->type == Node_param_list)
arg = stack_ptr[arg->param_cnt];
if (arg->type == Node_var_array)
*r = *arg;
else {
n = tree_eval(arg);
r->lnode = dupnode(n);
r->rnode = (NODE *) NULL;
free_temp(n);
}
*sp++ = r;
count--;
}
if (argp != NULL) /* left over calling args. */
warning(
"function `%s' called with more arguments than declared",
name->stptr);
/*
* add remaining params. on stack with null value
*/
while (count-- > 0) {
r = newnode(Node_var);
r->lnode = Nnull_string;
r->rnode = (NODE *) NULL;
*sp++ = r;
}
/*
* Execute function body, saving context, as a return statement
* will longjmp back here.
*
* Have to save and restore the loop_tag stuff so that a return
* inside a loop in a function body doesn't scrog any loops going
* on in the main program. We save the necessary info in variables
* local to this function so that function nesting works OK.
* We also only bother to save the loop stuff if we're in a loop
* when the function is called.
*/
if (loop_tag_valid) {
int junk = 0;
save_loop_tag_valid = (volatile int) loop_tag_valid;
PUSH_BINDING(loop_tag_stack, loop_tag, junk);
loop_tag_valid = 0;
}
save_stack = (volatile NODE **) stack_ptr;
stack_ptr = local_stack;
PUSH_BINDING(func_tag_stack, func_tag, func_tag_valid);
save_ret_node = (volatile NODE *) ret_node;
ret_node = Nnull_string; /* default return value */
if (setjmp(func_tag) == 0)
(void) interpret(f->rnode);
r = ret_node;
ret_node = (NODE *) save_ret_node;
RESTORE_BINDING(func_tag_stack, func_tag, func_tag_valid);
stack_ptr = (NODE **) save_stack;
/*
* here, we pop each parameter and check whether
* it was an array. If so, and if the arg. passed in was
* a simple variable, then the value should be copied back.
* This achieves "call-by-reference" for arrays.
*/
sp = local_stack;
count = f->lnode->param_cnt;
for (argp = arg_list; count > 0 && argp != NULL; argp = argp->rnode) {
arg = argp->lnode;
n = *sp++;
if (arg->type == Node_var && n->type == Node_var_array) {
arg->var_array = n->var_array;
arg->type = Node_var_array;
}
deref = n->lnode;
do_deref();
freenode(n);
count--;
}
while (count-- > 0) {
n = *sp++;
deref = n->lnode;
do_deref();
freenode(n);
}
free((char *) local_stack);
/* Restore the loop_tag stuff if necessary. */
if (save_loop_tag_valid) {
int junk = 0;
loop_tag_valid = (int) save_loop_tag_valid;
RESTORE_BINDING(loop_tag_stack, loop_tag, junk);
}
if (!(r->flags & PERM))
r->flags |= TEMP;
return r;
}
/*
* This returns a POINTER to a node pointer. get_lhs(ptr) is the current
* value of the var, or where to store the var's new value
*/
NODE **
get_lhs(ptr, assign)
NODE *ptr;
int assign; /* this is being called for the LHS of an assign. */
{
register NODE **aptr;
NODE *n;
#ifdef DEBUG
if (ptr == NULL)
cant_happen();
#endif
deref = NULL;
field_num = -1;
switch (ptr->type) {
case Node_var:
case Node_var_array:
if (ptr == NF_node && (int) NF_node->var_value->numbr == -1)
(void) get_field(HUGE-1, assign); /* parse record */
deref = ptr->var_value;
#ifdef DEBUG
if (deref->type != Node_val)
cant_happen();
if (deref->flags == 0)
cant_happen();
#endif
return &(ptr->var_value);
case Node_param_list:
n = stack_ptr[ptr->param_cnt];
deref = n->var_value;
#ifdef DEBUG
if (deref->type != Node_val)
cant_happen();
if (deref->flags == 0)
cant_happen();
#endif
return &(n->var_value);
case Node_field_spec:
n = tree_eval(ptr->lnode);
field_num = (int) force_number(n);
free_temp(n);
if (field_num < 0)
fatal("attempt to access field %d", field_num);
aptr = get_field(field_num, assign);
deref = *aptr;
return aptr;
case Node_subscript:
n = ptr->lnode;
if (n->type == Node_param_list)
n = stack_ptr[n->param_cnt];
aptr = assoc_lookup(n, concat_exp(ptr->rnode));
deref = *aptr;
#ifdef DEBUG
if (deref->type != Node_val)
cant_happen();
if (deref->flags == 0)
cant_happen();
#endif
return aptr;
case Node_func:
fatal ("`%s' is a function, assignment is not allowed",
ptr->lnode->param);
default:
cant_happen();
}
return 0;
}
static NODE *
match_op(tree)
NODE *tree;
{
NODE *t1;
struct re_pattern_buffer *rp;
int i;
int match = 1;
if (tree->type == Node_nomatch)
match = 0;
if (tree->type == Node_regex)
t1 = WHOLELINE;
else {
if (tree->lnode)
t1 = force_string(tree_eval(tree->lnode));
else
t1 = WHOLELINE;
tree = tree->rnode;
}
if (tree->type == Node_regex) {
rp = tree->rereg;
if (!strict && ((IGNORECASE_node->var_value->numbr != 0)
^ (tree->re_case != 0))) {
/* recompile since case sensitivity differs */
rp = tree->rereg =
mk_re_parse(tree->re_text,
(IGNORECASE_node->var_value->numbr != 0));
tree->re_case =
(IGNORECASE_node->var_value->numbr != 0);
}
} else {
rp = make_regexp(force_string(tree_eval(tree)),
(IGNORECASE_node->var_value->numbr != 0));
if (rp == NULL)
cant_happen();
}
i = re_search(rp, t1->stptr, t1->stlen, 0, t1->stlen,
(struct re_registers *) NULL);
i = (i == -1) ^ (match == 1);
free_temp(t1);
if (tree->type != Node_regex) {
free(rp->buffer);
free(rp->fastmap);
free((char *) rp);
}
return tmp_number((AWKNUM) i);
}